$16.8 \# 7$

In general: use RHR to figure ont correct orientation:
But in these special cases:

fie. normal has t = component)
bounding
curve
"positively
oriented cow when
(in the
wien ed from
above

$$
\iint_{\text {suffice }} \stackrel{\rightharpoonup}{F} \cdot d \vec{S}
$$

orientation abound this and lias nothing to of with. \vec{F}

Quiz 10 Summery:
\#1) Is it possible to have

$$
\nabla \times \vec{F}=\langle y,-x, z\rangle
$$

for some \vec{F} ?
fro important idarifice: $\nabla \times \nabla f=\overrightarrow{0}$ always

$$
\nabla \cdot(\nabla \times \vec{F})=0 \quad \text { always }
$$

Sol:

$$
0=\nabla \cdot(\nabla \times \vec{F})=\nabla \cdot\left\langle y_{1}-x, z\right\rangle=1
$$

This is a contradiction, so such an \vec{F} cannot exist, D
\#2) $S: \quad x^{2}+y^{2}+z^{2}=1$, outvards

$$
\iint_{S}(\nabla x<\langle-y, x, t\rangle): d \vec{S}
$$

Method 1: stokes

One interp

$$
\iint_{S}(\nabla \times\langle-y, x, z\rangle) d \vec{S}
$$

$$
\begin{aligned}
& \left.=\iint_{\text {upper }_{\text {hem }}} \mid \nabla x\langle-y, x, z\rangle\right) \cdot d \vec{S}+\int_{\left.\right|_{\text {sher }}}(\nabla x\langle y, x, z\rangle) \cdot d \vec{S} \\
& =\oint_{\text {hemic }}(-y, x, z\rangle d \vec{r}+\oint_{-C}\left\langle-y_{1}, x, z\right\rangle \cdot d \vec{r} \\
& C \\
& =\oint_{c}\langle-y, x, z\rangle \cdot d \vec{r}-\oint_{C}\langle-y, x, z\rangle \cdot d \vec{r}=0
\end{aligned}
$$

Another interpretation:
First left consider a diff question...

"boundary (ie endpoints) of curve.

what's the bounclayy of this curve?
it has no boundary.

So topkes just gives

$$
\iint_{S}(\nabla<\langle-y, x, z\rangle) \cdot d \vec{S}=\int_{\text {nothing }}(-y, x z) \cdot d \vec{r}
$$

Methoil 2: Divergane Thur

$$
\begin{aligned}
& \text { ontwark. } \\
& =\iiint 0 d V \\
& x^{2}+y^{2}+z^{2} \leq 1
\end{aligned}
$$

12. IT the problem had instead been

$$
\int_{S}\left(\nabla \sqrt{x}\left(\frac{\langle-y, x, z\rangle}{x^{2}+y^{2}+z^{2}}\right)\right) \cdot d \vec{S}
$$

Then the stales mashed would still work anal conchas the intagial is 0, but the dieegeme then no longer works.

